On Automating Conversations

21 Oct 2019  ·  Ting-Hao 'Kenneth' Huang ·

From 2016 to 2018, we developed and deployed Chorus, a system that blends real-time human computation with artificial intelligence (AI) and has real-world, open conversations with users. We took a top-down approach that started with a working crowd-powered system, Chorus, and then created a framework, Evorus, that enables Chorus to automate itself over time. Over our two-year deployment, more than 420 users talked with Chorus, having over 2,200 conversation sessions. This line of work demonstrated how a crowd-powered conversational assistant can be automated over time, and more importantly, how such a system can be deployed to talk with real users to help them with their everyday tasks. This position paper discusses two sets of challenges that we explored during the development and deployment of Chorus and Evorus: the challenges that come from being an "agent" and those that arise from the subset of conversations that are more difficult to automate.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here