On Bellman equations for continuous-time policy evaluation I: discretization and approximation

8 Jul 2024  ·  Wenlong Mou, Yuhua Zhu ·

We study the problem of computing the value function from a discretely-observed trajectory of a continuous-time diffusion process. We develop a new class of algorithms based on easily implementable numerical schemes that are compatible with discrete-time reinforcement learning (RL) with function approximation. We establish high-order numerical accuracy as well as the approximation error guarantees for the proposed approach. In contrast to discrete-time RL problems where the approximation factor depends on the effective horizon, we obtain a bounded approximation factor using the underlying elliptic structures, even if the effective horizon diverges to infinity.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods