On better training the infinite restricted Boltzmann machines

11 Sep 2017  ·  Xuan Peng, Xunzhang Gao, Xiang Li ·

The infinite restricted Boltzmann machine (iRBM) is an extension of the classic RBM. It enjoys a good property of automatically deciding the size of the hidden layer according to specific training data. With sufficient training, the iRBM can achieve a competitive performance with that of the classic RBM. However, the convergence of learning the iRBM is slow, due to the fact that the iRBM is sensitive to the ordering of its hidden units, the learned filters change slowly from the left-most hidden unit to right. To break this dependency between neighboring hidden units and speed up the convergence of training, a novel training strategy is proposed. The key idea of the proposed training strategy is randomly regrouping the hidden units before each gradient descent step. Potentially, a mixing of infinite many iRBMs with different permutations of the hidden units can be achieved by this learning method, which has a similar effect of preventing the model from over-fitting as the dropout. The original iRBM is also modified to be capable of carrying out discriminative training. To evaluate the impact of our method on convergence speed of learning and the model's generalization ability, several experiments have been performed on the binarized MNIST and CalTech101 Silhouettes datasets. Experimental results indicate that the proposed training strategy can greatly accelerate learning and enhance generalization ability of iRBMs.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods