On-CMOS High-Throughput Multi-Modal Amperometric DNA Analysis with Distributed Thermal Regulation

30 Jul 2022  ·  Hamed M. Jafari, Xilin Liu, Roman Genov ·

Accurate temperature regulation is critical for amperometric DNA analysis to achieve high fidelity, reliability, and throughput. In this work, a 9x6 cell array of mixed-signal CMOS distributed temperature regulators for on-CMOS multi-modal amperometric DNA analysis is presented. Three DNA analysis methods are supported, including constant potential amperometry (CPA), cyclic voltammetry (CV), and impedance spectroscopy (IS). In-cell heating and temperature sensing elements are implemented in standard CMOS technology without post-processing. Using proportional-integral-derivative (PID) control, the local temperature can be regulated to within +/-0.5C of any desired value between 20C and 90C. The two computationally intensive operations in the PID algorithm, multiplication, and subtraction, are performed by an in-cell dual-slope multiplying ADC in the mixed-signal domain, resulting in a small area and low power consumption. Over 95% of the circuit blocks are synergistically shared among the four operating modes, including CPA, CV, IS, and the proposed temperature regulation mode. A 3mmx3mm CMOS prototype fabricated in a 0.13um CMOS technology has been fully experimentally characterized. Each channel occupies an area of 0.06mm2 and consumes 42uW from a 1.2V supply. The proposed distributed temperature regulation design and the mixed-signal PID implementation can be applied to a wide range of sensory and other applications.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here