On Computationally Tractable Selection of Experiments in Measurement-Constrained Regression Models

9 Jan 2016  ·  Yining Wang, Adams Wei Yu, Aarti Singh ·

We derive computationally tractable methods to select a small subset of experiment settings from a large pool of given design points. The primary focus is on linear regression models, while the technique extends to generalized linear models and Delta's method (estimating functions of linear regression models) as well. The algorithms are based on a continuous relaxation of an otherwise intractable combinatorial optimization problem, with sampling or greedy procedures as post-processing steps. Formal approximation guarantees are established for both algorithms, and numerical results on both synthetic and real-world data confirm the effectiveness of the proposed methods.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.