On Concept-Based Explanations in Deep Neural Networks

25 Sep 2019  ·  Chih-Kuan Yeh, Been Kim, Sercan Arik, Chun-Liang Li, Pradeep Ravikumar, Tomas Pfister ·

Deep neural networks (DNNs) build high-level intelligence on low-level raw features. Understanding of this high-level intelligence can be enabled by deciphering the concepts they base their decisions on, as human-level thinking. In this paper, we study concept-based explainability for DNNs in a systematic framework. First, we define the notion of completeness, which quantifies how sufficient a particular set of concepts is in explaining a model's prediction behavior. Based on performance and variability motivations, we propose two definitions to quantify completeness. We show that under degenerate conditions, our method is equivalent to Principal Component Analysis. Next, we propose a concept discovery method that considers two additional constraints to encourage the interpretability of the discovered concepts. We use game-theoretic notions to aggregate over sets to define an importance score for each discovered concept, which we call \emph{ConceptSHAP}. On specifically-designed synthetic datasets and real-world text and image datasets, we validate the effectiveness of our framework in finding concepts that are complete in explaining the decision, and interpretable.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here