On Conditioning GANs to Hierarchical Ontologies

16 May 2019  ·  Hamid Eghbal-zadeh, Lukas Fischer, Thomas Hoch ·

The recent success of Generative Adversarial Networks (GAN) is a result of their ability to generate high quality images from a latent vector space. An important application is the generation of images from a text description, where the text description is encoded and further used in the conditioning of the generated image. Thus the generative network has to additionally learn a mapping from the text latent vector space to a highly complex and multi-modal image data distribution, which makes the training of such models challenging. To handle the complexities of fashion image and meta data, we propose Ontology Generative Adversarial Networks (O-GANs) for fashion image synthesis that is conditioned on an hierarchical fashion ontology in order to improve the image generation fidelity. We show that the incorporation of the ontology leads to better image quality as measured by Fr\'{e}chet Inception Distance and Inception Score. Additionally, we show that the O-GAN achieves better conditioning results evaluated by implicit similarity between the text and the generated image.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here