On Convergence of Average-Reward Off-Policy Control Algorithms in Weakly Communicating MDPs

30 Sep 2022  ·  Yi Wan, Richard S. Sutton ·

We show two average-reward off-policy control algorithms, Differential Q-learning (Wan, Naik, & Sutton 2021a) and RVI Q-learning (Abounadi Bertsekas & Borkar 2001), converge in weakly communicating MDPs. Weakly communicating MDPs are the most general MDPs that can be solved by a learning algorithm with a single stream of experience. The original convergence proofs of the two algorithms require that the solution set of the average-reward optimality equation only has one degree of freedom, which is not necessarily true for weakly communicating MDPs. To the best of our knowledge, our results are the first showing average-reward off-policy control algorithms converge in weakly communicating MDPs. As a direct extension, we show that average-reward options algorithms for temporal abstraction introduced by Wan, Naik, & Sutton (2021b) converge if the Semi-MDP induced by options is weakly communicating.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.