On Detection and Structural Reconstruction of Small-World Random Networks

21 Apr 2016T. Tony CaiTengyuan LiangAlexander Rakhlin

In this paper, we study detection and fast reconstruction of the celebrated Watts-Strogatz (WS) small-world random graph model \citep{watts1998collective} which aims to describe real-world complex networks that exhibit both high clustering and short average length properties. The WS model with neighborhood size $k$ and rewiring probability probability $\beta$ can be viewed as a continuous interpolation between a deterministic ring lattice graph and the Erd\H{o}s-R\'{e}nyi random graph... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet