Inference, estimation, sampling and likelihood evaluation are four primary goals of probabilistic modeling. Practical considerations often force modeling approaches to make compromises between these objectives. We present a novel probabilistic learning framework, called Fenchel Mini-Max Learning (FML), that accommodates all four desiderata in a flexible and scalable manner. Our derivation is rooted in classical maximum likelihood estimation, and it overcomes a longstanding challenge that prevents unbiased estimation of unnormalized statistical models. By reformulating MLE as a mini-max game, FML enjoys an unbiased training objective that (i) does not explicitly involve the intractable normalizing constant and (ii) is directly amendable to stochastic gradient descent optimization. To demonstrate the utility of the proposed approach, we consider learning unnormalized statistical models, nonparametric density estimation and training generative models, with encouraging empirical results presented.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here