On Iterative Hard Thresholding Methods for High-dimensional M-Estimation

The use of M-estimators in generalized linear regression models in high dimensional settings requires risk minimization with hard $L_0$ constraints. Of the known methods, the class of projected gradient descent (also known as iterative hard thresholding (IHT)) methods is known to offer the fastest and most scalable solutions... (read more)

PDF Abstract NeurIPS 2014 PDF NeurIPS 2014 Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

Linear Regression
Generalized Linear Models