On Lebesgue Integral Quadrature

17 Jul 2018  ·  Vladislav Gennadievich Malyshkin ·

A new type of quadrature is developed. The Gaussian quadrature, for a given measure, finds optimal values of a function's argument (nodes) and the corresponding weights. In contrast, the Lebesgue quadrature developed in this paper, finds optimal values of function (value-nodes) and the corresponding weights. The Gaussian quadrature groups sums by function argument; it can be viewed as a $n$-point discrete measure, producing the Riemann integral. The Lebesgue quadrature groups sums by function value; it can be viewed as a $n$-point discrete distribution, producing the Lebesgue integral. Mathematically, the problem is reduced to a generalized eigenvalue problem: Lebesgue quadrature value-nodes are the eigenvalues and the corresponding weights are the square of the averaged eigenvectors. A numerical estimation of an integral as the Lebesgue integral is especially advantageous when analyzing irregular and stochastic processes. The approach separates the outcome (value-nodes) and the probability of the outcome (weight). For this reason, it is especially well-suited for the study of non-Gaussian processes. The software implementing the theory is available from the authors.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here