Geometric Rates of Convergence for Kernel-based Sampling Algorithms

19 Jul 2019  ·  Rajiv Khanna, Liam Hodgkinson, Michael W. Mahoney ·

The rate of convergence of weighted kernel herding (WKH) and sequential Bayesian quadrature (SBQ), two kernel-based sampling algorithms for estimating integrals with respect to some target probability measure, is investigated. Under verifiable conditions on the chosen kernel and target measure, we establish a near-geometric rate of convergence for target measures that are nearly atomic. Furthermore, we show these algorithms perform comparably to the theoretical best possible sampling algorithm under the maximum mean discrepancy. An analysis is also conducted in a distributed setting. Our theoretical developments are supported by empirical observations on simulated data as well as a real world application.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here