On Local Optimizers of Acquisition Functions in Bayesian Optimization

24 Jan 2019Jungtaek KimSeungjin Choi

Bayesian optimization is a sample-efficient method for finding a global optimum of an expensive-to-evaluate black-box function. A global solution is found by accumulating a pair of query point and its function value, repeating these two procedures: (i) modeling a surrogate function; (ii) maximizing an acquisition function to determine where next to query... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet