ON NEURAL NETWORK GENERALIZATION VIA PROMOTING WITHIN-LAYER ACTIVATION DIVERSITY

1 Jan 2021  ·  Firas Laakom, Jenni Raitoharju, Alexandros Iosifidis, Moncef Gabbouj ·

During the last decade, neural networks have been intensively used to tackle various problems and they have often led to state-of-the-art results. These networks are composed of multiple jointly optimized layers arranged in a hierarchical structure. At each layer, the aim is to learn to extract hidden patterns needed to solve the problem at hand and forward it to the next layers. In the standard form, a neural network is trained with gradient-based optimization, where the errors are back-propagated from the last layer back to the first one. Thus at each optimization step, neurons at a given layer receive feedback from neurons belonging to higher layers of the hierarchy. In this paper, we propose to complement this traditional 'between-layer' feedback with additional 'within-layer' feedback to encourage diversity of the activations within the same layer. To this end, we measure the pairwise similarity between the outputs of the neurons and use it to model the layer's overall diversity. By penalizing similarities and promoting diversity, we encourage each neuron to learn a distinctive representation and, thus, to enrich the data representation learned within the layer and to increase the total capacity of the model. We theoretically study how the within-layer activation diversity affects the generalization performance of a neural network in a supervised context and we prove that increasing the diversity of hidden activations reduces the estimation error. In addition to the theoretical guarantees, we present an empirical study confirming that the proposed approach enhances the performance of neural networks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here