Tensor Completion by Multi-Rank via Unitary Transformation

16 Dec 2020  ·  Guang-Jing Song, Michael K. Ng, Xiongjun Zhang ·

One of the key problems in tensor completion is the number of uniformly random sample entries required for recovery guarantee. The main aim of this paper is to study $n_1 \times n_2 \times n_3$ third-order tensor completion based on transformed tensor singular value decomposition, and provide a bound on the number of required sample entries. Our approach is to make use of the multi-rank of the underlying tensor instead of its tubal rank in the bound. In numerical experiments on synthetic and imaging data sets, we demonstrate the effectiveness of our proposed bound for the number of sample entries. Moreover, our theoretical results are valid to any unitary transformation applied to $n_3$-dimension under transformed tensor singular value decomposition.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here