On Primes, Log-Loss Scores and (No) Privacy

17 Sep 2020  ·  Abhinav Aggarwal, Zekun Xu, Oluwaseyi Feyisetan, Nathanael Teissier ·

Membership Inference Attacks exploit the vulnerabilities of exposing models trained on customer data to queries by an adversary. In a recently proposed implementation of an auditing tool for measuring privacy leakage from sensitive datasets, more refined aggregates like the Log-Loss scores are exposed for simulating inference attacks as well as to assess the total privacy leakage based on the adversary's predictions... In this paper, we prove that this additional information enables the adversary to infer the membership of any number of datapoints with full accuracy in a single query, causing complete membership privacy breach. Our approach obviates any attack model training or access to side knowledge with the adversary. Moreover, our algorithms are agnostic to the model under attack and hence, enable perfect membership inference even for models that do not memorize or overfit. In particular, our observations provide insight into the extent of information leakage from statistical aggregates and how they can be exploited. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here