On Rate-Distortion Theory in Capacity-Limited Cognition & Reinforcement Learning

30 Oct 2022  ·  Dilip Arumugam, Mark K. Ho, Noah D. Goodman, Benjamin Van Roy ·

Throughout the cognitive-science literature, there is widespread agreement that decision-making agents operating in the real world do so under limited information-processing capabilities and without access to unbounded cognitive or computational resources. Prior work has drawn inspiration from this fact and leveraged an information-theoretic model of such behaviors or policies as communication channels operating under a bounded rate constraint. Meanwhile, a parallel line of work also capitalizes on the same principles from rate-distortion theory to formalize capacity-limited decision making through the notion of a learning target, which facilitates Bayesian regret bounds for provably-efficient learning algorithms. In this paper, we aim to elucidate this latter perspective by presenting a brief survey of these information-theoretic models of capacity-limited decision making in biological and artificial agents.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here