On regularization for a convolutional kernel in neural networks

12 Jun 2019  ·  Pei-Chang Guo, Qiang Ye ·

Convolutional neural network is an important model in deep learning. To avoid exploding/vanishing gradient problems and to improve the generalizability of a neural network, it is desirable to have a convolution operation that nearly preserves the norm, or to have the singular values of the transformation matrix corresponding to a convolutional kernel bounded around $1$. We propose a penalty function that can be used in the optimization of a convolutional neural network to constrain the singular values of the transformation matrix around $1$. We derive an algorithm to carry out the gradient descent minimization of this penalty function in terms of convolution kernels. Numerical examples are presented to demonstrate the effectiveness of the method.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.