Minimization of regularized losses is a principled approach to weak supervision well-established in deep learning, in general. However, it is largely overlooked in semantic segmentation currently dominated by methods mimicking full supervision via "fake" fully-labeled training masks (proposals) generated from available partial input... (read more)
PDFMETHOD | TYPE | |
---|---|---|
🤖 No Methods Found | Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet |