On Robustness of Prompt-based Semantic Parsing with Large Pre-trained Language Model: An Empirical Study on Codex

Semantic parsing is a technique aimed at constructing a structured representation of the meaning of a natural-language question. Recent advancements in few-shot language models trained on code have demonstrated superior performance in generating these representations compared to traditional unimodal language models, which are trained on downstream tasks. Despite these advancements, existing fine-tuned neural semantic parsers are susceptible to adversarial attacks on natural-language inputs. While it has been established that the robustness of smaller semantic parsers can be enhanced through adversarial training, this approach is not feasible for large language models in real-world scenarios, as it requires both substantial computational resources and expensive human annotation on in-domain semantic parsing data. This paper presents the first empirical study on the adversarial robustness of a large prompt-based language model of code, \codex. Our results demonstrate that the state-of-the-art (SOTA) code-language models are vulnerable to carefully crafted adversarial examples. To address this challenge, we propose methods for improving robustness without the need for significant amounts of labeled data or heavy computational resources.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here