On Sampling and Greedy MAP Inference of Constrained Determinantal Point Processes

6 Jul 2016  ·  Tarun Kathuria, Amit Deshpande ·

Subset selection problems ask for a small, diverse yet representative subset of the given data. When pairwise similarities are captured by a kernel, the determinants of submatrices provide a measure of diversity or independence of items within a subset. Matroid theory gives another notion of independence, thus giving rise to optimization and sampling questions about Determinantal Point Processes (DPPs) under matroid constraints. Partition constraints, as a special case, arise naturally when incorporating additional labeling or clustering information, besides the kernel, in DPPs. Finding the maximum determinant submatrix under matroid constraints on its row/column indices has been previously studied. However, the corresponding question of sampling from DPPs under matroid constraints has been unresolved, beyond the simple cardinality constrained k-DPPs. We give the first polynomial time algorithm to sample exactly from DPPs under partition constraints, for any constant number of partitions. We complement this by a complexity theoretic barrier that rules out such a result under general matroid constraints. Our experiments indicate that partition-constrained DPPs offer more flexibility and more diversity than k-DPPs and their naive extensions, while being reasonably efficient in running time. We also show that a simple greedy initialization followed by local search gives improved approximation guarantees for the problem of MAP inference from k- DPPs on well-conditioned kernels. Our experiments show that this improvement is significant for larger values of k, supporting our theoretical result.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here