On Sampling Strategies for Neural Network-based Collaborative Filtering

23 Jun 2017Ting ChenYizhou SunYue ShiLiangjie Hong

Recent advances in neural networks have inspired people to design hybrid recommendation algorithms that can incorporate both (1) user-item interaction information and (2) content information including image, audio, and text. Despite their promising results, neural network-based recommendation algorithms pose extensive computational costs, making it challenging to scale and improve upon... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet