Paper

On the Communication Complexity of Decentralized Bilevel Optimization

Decentralized bilevel optimization has been actively studied in the past few years since it has widespread applications in machine learning. However, existing algorithms suffer from large communication complexity caused by the estimation of stochastic hypergradient, limiting their application to real-world tasks. To address this issue, we develop a novel decentralized stochastic bilevel gradient descent algorithm under the heterogeneous setting, which enjoys a small communication cost in each round and a small number of communication rounds. As such, it can achieve a much better communication complexity than existing algorithms without any strong assumptions regarding heterogeneity. To the best of our knowledge, this is the first stochastic algorithm achieving these theoretical results under the heterogeneous setting. At last, the experimental results confirm the efficacy of our algorithm.

Results in Papers With Code
(↓ scroll down to see all results)