We consider a wireless network comprising $n$ nodes located within a circular area of radius $R$, which are participating in a decentralized learning algorithm to optimize a global objective function using their local datasets. To enable gradient exchanges across the network, we assume each node communicates only with a set of neighboring nodes, which are within a distance $R n^{-\beta}$ of itself, where $\beta\in(0,\frac{1}{2})$... (read more)

PDF
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.

METHOD | TYPE | |
---|---|---|

🤖 No Methods Found | Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet |