On the Convergence of Adaptive Gradient Methods for Nonconvex Optimization

16 Aug 2018  ·  Dongruo Zhou, Jinghui Chen, Yuan Cao, Ziyan Yang, Quanquan Gu ·

Adaptive gradient methods are workhorses in deep learning. However, the convergence guarantees of adaptive gradient methods for nonconvex optimization have not been thoroughly studied. In this paper, we provide a fine-grained convergence analysis for a general class of adaptive gradient methods including AMSGrad, RMSProp and AdaGrad. For smooth nonconvex functions, we prove that adaptive gradient methods in expectation converge to a first-order stationary point. Our convergence rate is better than existing results for adaptive gradient methods in terms of dimension. In addition, we also prove high probability bounds on the convergence rates of AMSGrad, RMSProp as well as AdaGrad, which have not been established before. Our analyses shed light on better understanding the mechanism behind adaptive gradient methods in optimizing nonconvex objectives.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods