On the Convergence of Langevin Monte Carlo: The Interplay between Tail Growth and Smoothness

27 May 2020 Murat A. Erdogdu Rasa Hosseinzadeh

We study sampling from a target distribution ${\nu_* = e^{-f}}$ using the unadjusted Langevin Monte Carlo (LMC) algorithm. For any potential function $f$ whose tails behave like ${\|x\|^\alpha}$ for ${\alpha \in [1,2]}$, and has $\beta$-H\"older continuous gradient, we prove that ${\widetilde{\mathcal{O}} \Big(d^{\frac{1}{\beta}+\frac{1+\beta}{\beta}(\frac{2}{\alpha} - \boldsymbol{1}_{\{\alpha \neq 1\}})} \epsilon^{-\frac{1}{\beta}}\Big)}$ steps are sufficient to reach the $\epsilon $-neighborhood of a $d$-dimensional target distribution $\nu_*$ in KL-divergence... (read more)

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet