On the Curse of Memory in Recurrent Neural Networks: Approximation and Optimization Analysis

ICLR 2021  ·  Zhong Li, Jiequn Han, Weinan E, Qianxiao Li ·

We study the approximation properties and optimization dynamics of recurrent neural networks (RNNs) when applied to learn input-output relationships in temporal data. We consider the simple but representative setting of using continuous-time linear RNNs to learn from data generated by linear relationships. Mathematically, the latter can be understood as a sequence of linear functionals. We prove a universal approximation theorem of such linear functionals, and characterize the approximation rate and its relation with memory. Moreover, we perform a fine-grained dynamical analysis of training linear RNNs, which further reveal the intricate interactions between memory and learning. A unifying theme uncovered is the non-trivial effect of memory, a notion that can be made precise in our framework, on approximation and optimization: when there is long term memory in the target, it takes a large number of neurons to approximate it. Moreover, the training process will suffer from slow downs. In particular, both of these effects become exponentially more pronounced with memory - a phenomenon we call the "curse of memory". These analyses represent a basic step towards a concrete mathematical understanding of new phenomenon that may arise in learning temporal relationships using recurrent architectures.

PDF Abstract ICLR 2021 PDF ICLR 2021 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here