On The Differential Privacy of Thompson Sampling With Gaussian Prior

24 Jun 2018  ·  Aristide C. Y. Tossou, Christos Dimitrakakis ·

We show that Thompson Sampling with Gaussian Prior as detailed by Algorithm 2 in (Agrawal & Goyal, 2013) is already differentially private. Theorem 1 show that it enjoys a very competitive privacy loss of only $\mathcal{O}(\ln^2 T)$ after T rounds. Finally, Theorem 2 show that one can control the privacy loss to any desirable $\epsilon$ level by appropriately increasing the variance of the samples from the Gaussian posterior. And this increases the regret only by a term of $\mathcal{O}(\frac{\ln^2 T}{\epsilon})$. This compares favorably to the previous result for Thompson Sampling in the literature ((Mishra & Thakurta, 2015)) which adds a term of $\mathcal{O}(\frac{K \ln^3 T}{\epsilon^2})$ to the regret in order to achieve the same privacy level. Furthermore, our result use the basic Thompson Sampling with few modifications whereas the result of (Mishra & Thakurta, 2015) required sophisticated constructions.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here