On the Direction of Discrimination: An Information-Theoretic Analysis of Disparate Impact in Machine Learning

16 Jan 2018Hao WangBerk UstunFlavio P. Calmon

In the context of machine learning, disparate impact refers to a form of systematic discrimination whereby the output distribution of a model depends on the value of a sensitive attribute (e.g., race or gender). In this paper, we propose an information-theoretic framework to analyze the disparate impact of a binary classification model... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet