On the Effect of Low-Frequency Terms on Neural-IR Models

29 Apr 2019  ·  Sebastian Hofstätter, Navid Rekabsaz, Carsten Eickhoff, Allan Hanbury ·

Low-frequency terms are a recurring challenge for information retrieval models, especially neural IR frameworks struggle with adequately capturing infrequently observed words. While these terms are often removed from neural models - mainly as a concession to efficiency demands - they traditionally play an important role in the performance of IR models. In this paper, we analyze the effects of low-frequency terms on the performance and robustness of neural IR models. We conduct controlled experiments on three recent neural IR models, trained on a large-scale passage retrieval collection. We evaluate the neural IR models with various vocabulary sizes for their respective word embeddings, considering different levels of constraints on the available GPU memory. We observe that despite the significant benefits of using larger vocabularies, the performance gap between the vocabularies can be, to a great extent, mitigated by extensive tuning of a related parameter: the number of documents to re-rank. We further investigate the use of subword-token embedding models, and in particular FastText, for neural IR models. Our experiments show that using FastText brings slight improvements to the overall performance of the neural IR models in comparison to models trained on the full vocabulary, while the improvement becomes much more pronounced for queries containing low-frequency terms.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here