On the Effectiveness of Simple Success-Based Parameter Selection Mechanisms for Two Classical Discrete Black-Box Optimization Benchmark Problems

4 Mar 2018  ·  Carola Doerr, Markus Wagner ·

Despite significant empirical and theoretically supported evidence that non-static parameter choices can be strongly beneficial in evolutionary computation, the question how to best adjust parameter values plays only a marginal role in contemporary research on discrete black-box optimization. This has led to the unsatisfactory situation in which feedback-free parameter selection rules such as the cooling schedule of Simulated Annealing are predominant in state-of-the-art heuristics, while, at the same time, we understand very well that such time-dependent selection rules can only perform worse than adjustment rules that do take into account the evolution of the optimization process... A number of adaptive and self-adaptive parameter control strategies have been proposed in the literature, but did not (yet) make their way to a broader public. A key obstacle seems to lie in their rather complex update rules. The purpose of our work is to demonstrate that high-performing online parameter selection rules do not have to be very complicated. More precisely, we experiment with a multiplicative, comparison-based update rule to adjust the mutation probability of a (1+1)~Evolutionary Algorithm. We show that this simple self-adjusting rule outperforms the best static unary unbiased black-box algorithm on LeadingOnes, achieving an almost optimal speedup of about~$18\%$. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here