On the Equivalence of Causal Models: A Category-Theoretic Approach

18 Jan 2022  ·  Jun Otsuka, Hayato Saigo ·

We develop a category-theoretic criterion for determining the equivalence of causal models having different but homomorphic directed acyclic graphs over discrete variables. Following Jacobs et al. (2019), we define a causal model as a probabilistic interpretation of a causal string diagram, i.e., a functor from the ``syntactic'' category $\textsf{Syn}_G$ of graph $G$ to the category $\textsf{Stoch}$ of finite sets and stochastic matrices. The equivalence of causal models is then defined in terms of a natural transformation or isomorphism between two such functors, which we call a $\Phi$-abstraction and $\Phi$-equivalence, respectively. It is shown that when one model is a $\Phi$-abstraction of another, the intervention calculus of the former can be consistently translated into that of the latter. We also identify the condition under which a model accommodates a $\Phi$-abstraction, when transformations are deterministic.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here