On-the-fly Network Pruning for Object Detection

11 May 2016  ·  Marc Masana, Joost Van de Weijer, Andrew D. Bagdanov ·

Object detection with deep neural networks is often performed by passing a few thousand candidate bounding boxes through a deep neural network for each image. These bounding boxes are highly correlated since they originate from the same image. In this paper we investigate how to exploit feature occurrence at the image scale to prune the neural network which is subsequently applied to all bounding boxes. We show that removing units which have near-zero activation in the image allows us to significantly reduce the number of parameters in the network. Results on the PASCAL 2007 Object Detection Challenge demonstrate that up to 40% of units in some fully-connected layers can be entirely eliminated with little change in the detection result.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here