On the Gap between Epidemiological Surveillance and Preparedness

10 Aug 2020  ·  Svetlana Yanushkevich, Vlad Shmerko ·

Contemporary Epidemiological Surveillance (ES) relies heavily on data analytics. These analytics are critical input for pandemics preparedness networks; however, this input is not integrated into a form suitable for decision makers or experts in preparedness. A decision support system (DSS) with Computational Intelligence (CI) tools is required to bridge the gap between epidemiological model of evidence and expert group decision. We argue that such DSS shall be a cognitive dynamic system enabling the CI and human expert to work together. The core of such DSS must be based on machine reasoning techniques such as probabilistic inference, and shall be capable of estimating risks, reliability and biases in decision making.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here