On the Limitation of MagNet Defense against $L_1$-based Adversarial Examples

14 Apr 2018  ·  Pei-Hsuan Lu, Pin-Yu Chen, Kang-Cheng Chen, Chia-Mu Yu ·

In recent years, defending adversarial perturbations to natural examples in order to build robust machine learning models trained by deep neural networks (DNNs) has become an emerging research field in the conjunction of deep learning and security. In particular, MagNet consisting of an adversary detector and a data reformer is by far one of the strongest defenses in the black-box oblivious attack setting, where the attacker aims to craft transferable adversarial examples from an undefended DNN model to bypass an unknown defense module deployed on the same DNN model. Under this setting, MagNet can successfully defend a variety of attacks in DNNs, including the high-confidence adversarial examples generated by the Carlini and Wagner's attack based on the $L_2$ distortion metric. However, in this paper, under the same attack setting we show that adversarial examples crafted based on the $L_1$ distortion metric can easily bypass MagNet and mislead the target DNN image classifiers on MNIST and CIFAR-10. We also provide explanations on why the considered approach can yield adversarial examples with superior attack performance and conduct extensive experiments on variants of MagNet to verify its lack of robustness to $L_1$ distortion based attacks. Notably, our results substantially weaken the assumption of effective threat models on MagNet that require knowing the deployed defense technique when attacking DNNs (i.e., the gray-box attack setting).

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here