On the Optimality of Kernel-Embedding Based Goodness-of-Fit Tests

24 Sep 2017  ·  Krishnakumar Balasubramanian, Tong Li, Ming Yuan ·

The reproducing kernel Hilbert space (RKHS) embedding of distributions offers a general and flexible framework for testing problems in arbitrary domains and has attracted considerable amount of attention in recent years. To gain insights into their operating characteristics, we study here the statistical performance of such approaches within a minimax framework. Focusing on the case of goodness-of-fit tests, our analyses show that a vanilla version of the kernel-embedding based test could be suboptimal, and suggest a simple remedy by moderating the embedding. We prove that the moderated approach provides optimal tests for a wide range of deviations from the null and can also be made adaptive over a large collection of interpolation spaces. Numerical experiments are presented to further demonstrate the merits of our approach.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here