On the Optimality of Perturbations in Stochastic and Adversarial Multi-armed Bandit Problems

NeurIPS 2019  ·  Baekjin Kim, Ambuj Tewari ·

We investigate the optimality of perturbation based algorithms in the stochastic and adversarial multi-armed bandit problems. For the stochastic case, we provide a unified regret analysis for both sub-Weibull and bounded perturbations when rewards are sub-Gaussian. Our bounds are instance optimal for sub-Weibull perturbations with parameter 2 that also have a matching lower tail bound, and all bounded support perturbations where there is sufficient probability mass at the extremes of the support. For the adversarial setting, we prove rigorous barriers against two natural solution approaches using tools from discrete choice theory and extreme value theory. Our results suggest that the optimal perturbation, if it exists, will be of Frechet-type.

PDF Abstract NeurIPS 2019 PDF NeurIPS 2019 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here