On The Performance of Time-Pooling Strategies for End-to-End Spoken Language Identification

LREC 2020  ·  Joao Monteiro, Md Jahangir Alam, Tiago Falk ·

Automatic speech processing applications often have to deal with the problem of aggregating local descriptors (i.e., representations of input speech data corresponding to specific portions across the time dimension) and turning them into a single fixed-dimension representation, known as global descriptor, on top of which downstream classification tasks can be performed. In this paper, we provide an empirical assessment of different time pooling strategies when used with state-of-the-art representation learning models. In particular, insights are provided as to when it is suitable to use simple statistics of local descriptors or when more sophisticated approaches are needed. Here, language identification is used as a case study and a database containing ten oriental languages under varying test conditions (short-duration test recordings, confusing languages, unseen languages) is used. Experiments are performed with classifiers trained on top of global descriptors to provide insights on open-set evaluation performance and show that appropriate selection of such pooling strategies yield embeddings able to outperform well-known benchmark systems as well as previously results based on attention only.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here