We show that given an estimate $\widehat{A}$ that is close to a general high-rank positive semi-definite (PSD) matrix $A$ in spectral norm (i.e., $\|\widehat{A}-A\|_2 \leq \delta$), the simple truncated SVD of $\widehat{A}$ produces a multiplicative approximation of $A$ in Frobenius norm. This observation leads to many interesting results on general high-rank matrix estimation problems, which we briefly summarize below ($A$ is an $n\times n$ high-rank PSD matrix and $A_k$ is the best rank-$k$ approximation of $A$): (1) High-rank matrix completion: By observing $\Omega(\frac{n\max\{\epsilon^{-4},k^2\}\mu_0^2\|A\|_F^2\log n}{\sigma_{k+1}(A)^2})$ elements of $A$ where $\sigma_{k+1}\left(A\right)$ is the $\left(k+1\right)$-th singular value of $A$ and $\mu_0$ is the incoherence, the truncated SVD on a zero-filled matrix satisfies $\|\widehat{A}_k-A\|_F \leq (1+O(\epsilon))\|A-A_k\|_F$ with high probability... (read more)

PDF
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.

METHOD | TYPE | |
---|---|---|

🤖 No Methods Found | Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet |