On the Relationship Between Binary Classification, Bipartite Ranking, and Binary Class Probability Estimation

NeurIPS 2013 Harikrishna NarasimhanShivani Agarwal

We investigate the relationship between three fundamental problems in machine learning: binary classification, bipartite ranking, and binary class probability estimation (CPE). It is known that a good binary CPE model can be used to obtain a good binary classification model (by thresholding at 0.5), and also to obtain a good bipartite ranking model (by using the CPE model directly as a ranking model); it is also known that a binary classification model does not necessarily yield a CPE model... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet