On the Universality of Invariant Networks

27 Jan 2019  ·  Haggai Maron, Ethan Fetaya, Nimrod Segol, Yaron Lipman ·

Constraining linear layers in neural networks to respect symmetry transformations from a group $G$ is a common design principle for invariant networks that has found many applications in machine learning. In this paper, we consider a fundamental question that has received little attention to date: Can these networks approximate any (continuous) invariant function? We tackle the rather general case where $G\leq S_n$ (an arbitrary subgroup of the symmetric group) that acts on $\mathbb{R}^n$ by permuting coordinates. This setting includes several recent popular invariant networks. We present two main results: First, $G$-invariant networks are universal if high-order tensors are allowed. Second, there are groups $G$ for which higher-order tensors are unavoidable for obtaining universality. $G$-invariant networks consisting of only first-order tensors are of special interest due to their practical value. We conclude the paper by proving a necessary condition for the universality of $G$-invariant networks that incorporate only first-order tensors.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here