On the Utility of Learning about Humans for Human-AI Coordination

While we would like agents that can coordinate with humans, current algorithms such as self-play and population-based training create agents that can coordinate with themselves. Agents that assume their partner to be optimal or similar to them can converge to coordination protocols that fail to understand and be understood by humans. To demonstrate this, we introduce a simple environment that requires challenging coordination, based on the popular game Overcooked, and learn a simple model that mimics human play. We evaluate the performance of agents trained via self-play and population-based training. These agents perform very well when paired with themselves, but when paired with our human model, they are significantly worse than agents designed to play with the human model. An experiment with a planning algorithm yields the same conclusion, though only when the human-aware planner is given the exact human model that it is playing with. A user study with real humans shows this pattern as well, though less strongly. Qualitatively, we find that the gains come from having the agent adapt to the human's gameplay. Given this result, we suggest several approaches for designing agents that learn about humans in order to better coordinate with them. Code is available at https://github.com/HumanCompatibleAI/overcooked_ai.

PDF Abstract NeurIPS 2019 PDF NeurIPS 2019 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here