On topology optimization of design-dependent pressure-loaded three-dimensional structures and compliant mechanisms

12 Sep 2020  ·  Prabhat Kumar, Matthijs Langelaar ·

This paper presents a density-based topology optimization method for designing three-dimensional (3D) compliant mechanisms and loadbearing structures with design-dependent pressure loading. Instead of interface-tracking techniques, the Darcy law in conjunction with a drainage term is employed to obtain pressure field as a function of the design vector. To ensure continuous transition of pressure loads as the design evolves, the flow coefficient of a finite element is defined using a smooth Heaviside function. The obtained pressure field is converted into consistent nodal loads using a transformation matrix. The presented approach employs the standard finite element formulation and also, allows consistent and computationally inexpensive calculation of load sensitivities using the adjoint-variable method. For compliant mechanism design, a multi-criteria objective is minimized, whereas minimization of compliance is performed for designing loadbearing structures. Efficacy and robustness of the presented approach is demonstrated by designing various pressure-actuated 3D compliant mechanisms and structures.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Computational Engineering, Finance, and Science

Datasets


  Add Datasets introduced or used in this paper