On Usage of Autoencoders and Siamese Networks for Online Handwritten Signature Verification

7 Dec 2017  ·  Kian Ahrabian, Bagher BabaAli ·

In this paper, we propose a novel writer-independent global feature extraction framework for the task of automatic signature verification which aims to make robust systems for automatically distinguishing negative and positive samples. Our method consists of an autoencoder for modeling the sample space into a fixed length latent space and a Siamese Network for classifying the fixed-length samples obtained from the autoencoder based on the reference samples of a subject as being "Genuine" or "Forged." During our experiments, usage of Attention Mechanism and applying Downsampling significantly improved the accuracy of the proposed framework. We evaluated our proposed framework using SigWiComp2013 Japanese and GPDSsyntheticOnLineOffLineSignature datasets. On the SigWiComp2013 Japanese dataset, we achieved 8.65% EER that means 1.2% relative improvement compared to the best-reported result. Furthermore, on the GPDSsyntheticOnLineOffLineSignature dataset, we achieved average EERs of 0.13%, 0.12%, 0.21% and 0.25% respectively for 150, 300, 1000 and 2000 test subjects which indicates improvement of relative EER on the best-reported result by 95.67%, 95.26%, 92.9% and 91.52% respectively. Apart from the accuracy gain, because of the nature of our proposed framework which is based on neural networks and consequently is as simple as some consecutive matrix multiplications, it has less computational cost than conventional methods such as DTW and could be used concurrently on devices such as GPU, TPU, etc.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.