On Wasserstein Two Sample Testing and Related Families of Nonparametric Tests

8 Sep 2015  ·  Aaditya Ramdas, Nicolas Garcia, Marco Cuturi ·

Nonparametric two sample or homogeneity testing is a decision theoretic problem that involves identifying differences between two random variables without making parametric assumptions about their underlying distributions. The literature is old and rich, with a wide variety of statistics having being intelligently designed and analyzed, both for the unidimensional and the multivariate setting. Our contribution is to tie together many of these tests, drawing connections between seemingly very different statistics. In this work, our central object is the Wasserstein distance, as we form a chain of connections from univariate methods like the Kolmogorov-Smirnov test, PP/QQ plots and ROC/ODC curves, to multivariate tests involving energy statistics and kernel based maximum mean discrepancy. Some connections proceed through the construction of a \textit{smoothed} Wasserstein distance, and others through the pursuit of a "distribution-free" Wasserstein test. Some observations in this chain are implicit in the literature, while others seem to have not been noticed thus far. Given nonparametric two sample testing's classical and continued importance, we aim to provide useful connections for theorists and practitioners familiar with one subset of methods but not others.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here