One-Shot Learning using Mixture of Variational Autoencoders: a Generalization Learning approach

Deep learning, even if it is very successful nowadays, traditionally needs very large amounts of labeled data to perform excellent on the classification task. In an attempt to solve this problem, the one-shot learning paradigm, which makes use of just one labeled sample per class and prior knowledge, becomes increasingly important... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet