Online and Bandit Algorithms for Nonstationary Stochastic Saddle-Point Optimization

3 Dec 2019  ·  Abhishek Roy, Yifang Chen, Krishnakumar Balasubramanian, Prasant Mohapatra ·

Saddle-point optimization problems are an important class of optimization problems with applications to game theory, multi-agent reinforcement learning and machine learning. A majority of the rich literature available for saddle-point optimization has focused on the offline setting. In this paper, we study nonstationary versions of stochastic, smooth, strongly-convex and strongly-concave saddle-point optimization problem, in both online (or first-order) and multi-point bandit (or zeroth-order) settings. We first propose natural notions of regret for such nonstationary saddle-point optimization problems. We then analyze extragradient and Frank-Wolfe algorithms, for the unconstrained and constrained settings respectively, for the above class of nonstationary saddle-point optimization problems. We establish sub-linear regret bounds on the proposed notions of regret in both the online and bandit setting.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here