Online Fall Detection using Recurrent Neural Networks

13 Apr 2018  ·  Mirto Musci, Daniele De Martini, Nicola Blago, Tullio Facchinetti, Marco Piastra ·

Unintentional falls can cause severe injuries and even death, especially if no immediate assistance is given. The aim of Fall Detection Systems (FDSs) is to detect an occurring fall. This information can be used to trigger the necessary assistance in case of injury. This can be done by using either ambient-based sensors, e.g. cameras, or wearable devices. The aim of this work is to study the technical aspects of FDSs based on wearable devices and artificial intelligence techniques, in particular Deep Learning (DL), to implement an effective algorithm for on-line fall detection. The proposed classifier is based on a Recurrent Neural Network (RNN) model with underlying Long Short-Term Memory (LSTM) blocks. The method is tested on the publicly available SisFall dataset, with extended annotation, and compared with the results obtained by the SisFall authors.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here