Online Hyperparameter Adaptation via Amortized Proximal Optimization

Effective performance of neural networks depends critically on effective tuning of optimization hyperparameters, especially learning rates (and schedules thereof). We present Amortized Proximal Optimization (APO), which takes the perspective that each optimization step should approximately minimize a proximal objective (similar to the ones used to motivate natural gradient and trust region policy optimization)... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
SGD
Stochastic Optimization